Pharmacogenetic factors influence escitalopram-induced side effects and self-injury in youth at high-risk for developing bipolar disorder

Duncan C. Honeycutt, MS, Laura B. Ramsey, PhD, Thomas J. Bloom, MS, Kaitlyn M. Brun, MA, LPC, Luis R. Patino, MD, Manpreet Singh, MD, Melissa P. DelBello, MD, MS

1University of Cincinnati College of Medicine, 2Cincinnati Children’s Hospital Medical Center, 3Stanford University School of Medicine

Objectives

Evaluate the influence of genetic factors on escitalopram pharmacokinetics and adverse events in youth with (1) a first-degree relative with bipolar I and (2) clinically significant depression or anxiety.

Introduction

- Escitalopram (ESC) is a selective serotonin reuptake inhibitor prescribed to treat symptoms of anxiety and depression in children and adolescents.
- The highly polymorphic enzymes cytochrome P450 2C19 and 2D6 (CYP2C19, CYP2D6) are primarily responsible for ESC metabolism and might explain some variability in ESC pharmacokinetics and side effects.
- The "short" (S) allele of SLC6A4 may diminish the efficacy of antidepressants and increase risk of hyper arousal relative to the "long" (L) allele; SNPs near the HTR2A gene (rs6311; 1438G>A) may increase the risk of antidepressant-related adverse events.

Methods

- Blood samples were obtained from adolescent patients with bipolar disorder aged 12 to 18 treated with ESC (n=48) and plasma ESC concentrations were measured via LC-MS-MS.
- Raising scales (TEASAP) were administered at baseline and throughout study to assess side effects and adverse events.
- Buccal swabs for genotyping were collected (n=66 in ESC group).
- Each patient’s ESC concentration was modeled to account for dose timing, doses missed, and blood sample collection time to estimate half-life (t1/2) and clearance (CL) then normalized to 20 mg/day to estimate 24-hour area under the curve (AUC24) and maximum concentration (Cmax) and trough concentrations (Cmin).
- Data were analyzed using ANOVA test for linear trend if there were 3 or more groups, and t tests if there were two groups.

Results

- CYP2C19 phenotype significantly predicts ESC AUC24 (p=0.03; Figure 1B, CYP2C19 Normal metabolizer status did not significantly predict participants’ increase in self-injury, though slower metabolizers had higher AUC24 relative to fast metabolizers.
- Slower CYP2D6 metabolism was correlated with greater increase in TEASAP "Self-Injury, Suicidality, and Harm to Others" score (i.e., Self-injury score) (p=0.03; Figure 2), but not other TEASAP outcomes.
- High-risk youth with HTR2A A/G or A/A genotypes had a significantly greater increase in self-injury compared to wild-type (GG) (p=0.02; Figure 3B). SLC6A4 genotype did not have a significant effect on TEASAP outcomes.

Discussion

1. Gene-drug interactions may contribute to greater rates of adverse events in high-risk youth treated with escitalopram.
2. Youths with a family history of bipolar disorder warrant careful consideration to avoid iatrogenic precipitation of self-injurious or manic behavior.
3. Genetic testing may improve the safety of antidepressants in high-risk youth.

Future Analysis

- Refine pharmacokinetic modeling to include CYP2D6 status and estimate relative contribution of CYP2C19 vs. CYP2D6 to ESC exposure.
- Correlate clinical outcomes to ESC exposure rather than individual enzyme metabolizer phenotypes.
- Determine whether combinations of genetic risk factors predict ESC-induced adverse events in youth at high risk of developing bipolar disorder.

Contact Information & Acknowledgements

Duncan Honeycutt, MS, MD Candidate, email: honeycdn@mail.uc.edu

We thank Ethan Powelot for his assistance with pharmacokinetic modeling, Zuanruo Deng for measuring the escitalopram concentrations, and Max Talman for his assistance with data acquisition and logistical support. This work was supported in part by Myriad and NIMH (grant numbers R01MH105464 & R01MH105469).

References

3. Table 1. Cohort Demographics

衔

Table: Cohort Demographics

<table>
<thead>
<tr>
<th>Method</th>
<th>Paper Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacokinetic Analysis (n=48)</td>
<td>Pharmacokinetic Analysis (n=48)</td>
</tr>
<tr>
<td>Age (yrs), mean±SD</td>
<td>14±1.7</td>
</tr>
<tr>
<td>Sex (%female)</td>
<td>56.3</td>
</tr>
<tr>
<td>Race & Ethnicity</td>
<td>n (%)</td>
</tr>
<tr>
<td>African</td>
<td>6 (12.5)</td>
</tr>
<tr>
<td>Hispanic Caucasian</td>
<td>6 (12.5)</td>
</tr>
<tr>
<td>Non-Hispanic Caucasian</td>
<td>30 (62.5)</td>
</tr>
<tr>
<td>Other & Mixed</td>
<td>6 (12.5)</td>
</tr>
<tr>
<td>HTR2A genotype</td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>n=29</td>
</tr>
<tr>
<td>AA/A4</td>
<td>n=37</td>
</tr>
</tbody>
</table>

Figure 1. (A) Sample curve from CYP2C19 normal metabolizer including initial model curve based on dose data and fitted curve adjusted for serum escitalopram concentration (“Actual”). (B) Slow & normal CYP2C19 metabolizers had higher AUC relative to fast metabolizers.

Figure 2. Slower CYP2D6 metabolism was correlated with greater increases in disbursement (p<0.02) and akathisia (p<0.01).